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There are great expectations for iPS cells as tools for drug development and resources for 
regenerative medicine. However, such medical applications demand a stable supply of iPS cells 
in large quantities and many issues for optimization of iPS cell generation remain to be resolved. 
In addition, evaluation of iPS cells is time-consuming and dependent on the skills of individual 
technicians.
We have developed a system that can observe a large quantity of iPS cells automatically and 
classify iPS colonies with a standardized algorithm.
In this experiment, a cell culture observation system (BioStation CT) was used to observe a 
culture, and image analysis software (CL-Quant) was used to scan phase-contrast images and 
automatically detect iPS/non-iPS colonies generated by reprogramming of normal somatic 
cells. In implementing the automatic detection an algorithm was designed to categorize cells of 
different origin based on parameters pertaining to morphological characteristics of the cells. For 
20 samples consisting of various numbers of colonies the coefficient of correlation was extremely 
high between the number of iPS colonies counted by inspection and the number of iPS colonies 
counted by CL-Quant. Accuracy in iPS/non-iPS identification was next compared. For the cell type 
used for algorithm design, accuracy was high at an average of 79.9%. For three types of cells 
of different origin the average accuracy was 80.3%. This indicates the strength of the method 
in providing accurate iPS/non-iPS identification results. To confirm the consistency of analysis 
results, accuracy was compared with the results of analyzing cells stained with the TRA-1-60 
antibody (marker specific to iPS cells). This experiment shows that iPS/non-iPS identification 
during the establishment stage can be automated eliminating the need for human intervention 
and allowing for non-invasive analysis without the use of fluorescent dyes. This provides several 
advantages. 1) Reduction of required time and effort. 2) Non-invasive analysis. 
3) Homogenization. The method allows for consistent selection of good iPS cells without 
requiring training. 4) Historical management. By maintaining a record of the identification results, 
quality evaluations can be reanalyzed with ease.
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iPS cell reprogramming
�	iPS cells were generated from adult human dermal fibroblast(HDF) by retroviral transduction of four   
 factors: Oct3/4, Sox2, Klf4, and c-Myc.[1]  

�	Six days after transduction, the cells were harvested by trypsinization and plated onto mitomycin   
 C-treated SNL feeder cells using 100 mm dish.

 Image acquisition
�	Phase contrast images and fluorescence images of 100 mm dish were acquired using BioStation CT   
 (NIKON CORPORATION) at 37°C, 5% CO2.

�Full Scan mode (2x) was set for acquiring full well tiling images.

�Tiling mode (10x) was set for acquiring partial well tiling images.

Image analysis
�	Full well tiling images were loaded into CL-Quant software (NIKON CORPORATION) and stitched to   
 create 18,000-by-18,000 pixel composite images for analysis.
�	All image analyses (colony segmentation, measurement, colony classification etc.) were performed   
 using functions built into CL-Quant software [2].

Fig. 2 BioStation CT
BioStation CT is a cell culture observation system that 
allows microscope observation of multiple vessels (max. 
30) easily and automatically under culture conditions. 
It is possible to acquire full-well tiling 2x images 
by selecting Full Scan mode. Acquired images are 
automatically downloaded onto a PC for analysis.

Fig. 6 Classification rule.
Left: A portion of a decision tree. 2695 colonies were taught (652 iPS, 2043 non-iPS) to create the small 
colony decision tree. 2013 colonies were taught (899 iPS, 1114 non-iPS) to create the large colony 
decision tree. Decision trees contain a variety of colony morphological and intensity information (size, 
intensity of boundary region, compactness, etc.) In both trees, the compactness of the colony mask is 
the primary rule (first decision node). This shows that iPS colonies have more rounded colony boundaries 
than non-iPS colonies.
Right: The compactness of the object.

Step 1) Total colony detection
To detect colonies accurately and quickly from stitched images, original stitched images are pre-
processed and colony regions are recognized as colony masks using machine leaning technology
 (Soft MatchingTM). Created colony masks undergo post-processing as follows (Fig. 3).

1) iPS colony count evaluation
Fig. 8 shows plotted results of manual and CL-Quant-made iPS counts of iPS colonies (in 20 samples) 
used for creating the algorithm. The linear approximation of the graph shows a high correlation function 
of R=0.95. This indicates that CL-Quant-made iPS counts have similar results to manual counts of any 
number of colonies. The difference between target areas of manual and CL-Quant-made counts may be 
less than 1 linear approximation slope.

2) Accuracy evaluation for different cell lines
Compare accuracies of manual and CL-Quant-made iPS/non-iPS identifications using iPS cell (Cell 
A), used for creating an algorithm, and other cell lines (Cell B, C, D). CL-Quant-made iPS/non-iPS 
identification using Cell A indicates an accuracy of 79.9%, and other cell lines 80.3%. This shows the 
strength of this analysis algorithm.

3) Comparison with iPS cell specific marker
Comparison results of TRA-1-60 positive/negative identification and CL-Quant-made iPS/non-iPS 
identification using TRA-1-60 immunofluorescent stain (an iPS cell specific marker). 
Comparing results of TRA-1-60 stain and CL-Quant-made identifications of 237 colonies, the results 
coincide for 70.4% of colonies (167 colonies), indicating the high consistency of both identifications. 
(Fig. 10, Table 1)

Step 2) iPS colony identification
iPS colony identification steps are shown in Fig. 4. Colonies detected in Step 1) are separated by size. 
Additional colony boundary masks are given to each colony (Fig. 5). Each colony is then classified as iPS 
or non-iPS based on the morphological rules depicted by the decision tree. The decision tree was created 
by teaching iPS/non-iPS colonies to CL-Quant software (Fig.6). Classified colonies are referred to the 
total iPS/non-iPS colony number in the vessel.
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• Nikon has developed an image analysis algorithm that detects colonies in the entire area of a dish and 
identifies iPS/non-iPS colonies using certain standards, such as compactness.
• iPS/non-iPS identification using the analysis algorithm shows similar results to manual identification 
(R=0.95) and also shows similar results (70.4% of agreement rate) to identification using iPS cell specific 
markers. In addition, the algorithm proves it is highly accurate (80.3%) for different cell lines.
• These noninvasive analysis systems can automatically acquire a number of images of samples and 
analyze images based on certain standards. These functions reduce variations in evaluation during iPS 
cell generation and save time and work.
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Fig. 3 Total colony detection step flow

Fig. 8 Comparison of manual and CL-Quant-made iPS colony countsFig. 7 Analysis result image 

Fig. 9 Accuracy evaluation of iPS/non-iPS identification

Fig. 10 TRA-1-60 immunofluorescent stained colony images (10x tiling images)

Table 1 Comparison of TRA-1-60 immunofluorescent stain result with CL-Quant iPS/non-iPS identification

Left: Definition of Accuracy.
Right: Accuracy comparison of iPS/non-iPS identification of several cell lines (use dozens of colonies for 1 data, N=3). 
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Fig. 1 Experimental step flow of iPS cell reprogramming, Image acquisition, and Image analysis
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Type TRA-1-60 CL-Quant Percentage Accuracy

A + iPS 65.8%
(156 colonies) ○ 70.4%

B - non-iPS 4.6%
(11 colonies)

C + non-iPS 28.7%
(68 colonies)

× 29.5%
D - iPS 0.8%

(2 colonies)
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Fig. 4 iPS colony identification step flow

Fig. 5 Typical iPS/non-iPS colony images and created colony masks and colony boundary masks
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